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PURPOSE

The objective of this program is the further development
of a Tactical Miniature Crystal Oscillator (TMXO). The present
effort is a continuation of research and development conducted
by the Bendix Communications Division, under contracts DAABO7-
71-C-0265 and DAAB07-73-C-0199. This earlier work has been
reported in ECOM-0265F and ECOM~0199F.

The tasks to be performed during the present contract fall
into two categories. The first category contains the unsolved
problems remaining from the previous work. This includes excess
power aging (because of the inability to maintain a vacuum in-
side the TMXO), and frequency recovery. The latter is most
probably related to the crystal and its package. The severity
of this problem is expected to be greatly diminished when a new
type ceramic crystal enclosure (presently under development
elsewhere) becomes available.

The second category consists of new and/or additional
performance requirements.

The required characteristics of the TMXO, together with the
achieved characteristics at the onset of this contract, are given
below.

Size. Volume not to exceed one cubic inch. Status - 1.08
cubic inches.

Input Voltage. 12 volts DC, +5%. Status - requirement
satisfied.

Available Warmup Power. Not to exceed 10.0 watts at any
ambient temperature (-54°C to +75°C), during the allowed
warmup time (three minutes). Status - requirement
satisfied.

Operating Power. After warmup, the maximum power input to
the TMXO shall not exceed 250 milliwatts at any tempera-
ture. Status - 1.7 watts without a vacuum inside the
TMXO. With a vacuum, 250 milliwatts at =-40°C.

Power Aging. Aging of the TMXO power consumption shall not
exceed 1 percent per month. Status - unable to maintain
low power (250 milliwatts). Aging is 680 percent in one
hour.

Voltage Control. The TMXO shall have provision for voltage
control, allowing a frequency deviation no less than 1.0 x
10-7 for a DC voltage change from 0 to +10 volts. Status -
new requirement.




Ambient Temperature Range. The TMXO shall meet all re-
quirements of this specification over the ambient tempera-
ture range of -54°C to +75°C. Status - this is an extended
temperature range beyond the previous requirement of -40°C
to +75°C. This new range presents no additional problems,
except, the maximum operating power (now at 54°C instead

of -40°C) may have to rise to 280 milliwatts.

Frequency Adjustment. A control shall be provided so that
the output frequency may be conveniently and uncritically
adjusted to 5.115 MHz +1 x 10- 10 with a minimum range of
+1 x 10-8. sStatus - requirement satisfied using a ten
turn 0- 100 kilohm potentiometer from one of the TMXO's
terminals to ground.

Frequency/Temperature Stability (Steady State). The maxi-

mum permissible frequency deviation over the temperature
range of -54°C to +75°C shall be +1 x 10-8. status -
requirement satisfied with TMXO evacuated. When not
evacuated, the frequency variation is +2 x 10-7.

Frequency/Temperature Stability (Transient). The frequency
of the TMXO shall not change more than +1 x 107° from its
initial value when subjected to a positive 10°C amplitude,
at a rate of 1°C/min., air temperature ramp starting at
-40°C, -5°C, +30°C, and +65°C. Status - new requirements.

Frequency/Load Stability. The maximum frequency deviation
for a load variation of 50 ohms +10%, +20° phase, shall be
+1 X 10-9. sStatus - typically +I x 1079, worst is +3 x
10=~. e *®

Frequency/Voltage Stability. The maximum permissible fre-
quency deviation for a supply voltage variation of 12 volts
DC +5% shall be +1 x 10-9 Status - the typical value for
a +5% voltage is +9 x 10~ 10,” por a -5% voltage it is -1.5
x 102. The best is +4 x lO 10, and the worst is +3 x 107 o

Frequency Aging. Aglng of the TMXO output frequency shall
not exceed 2 x 10~ per week, operating, after a 30 day
stablllzatlon perlod Status - aging varied from -3 x
9/day to -7 x 10-8/day, depending upon the unit. The
new crystal/ceramic enclosure (presently under development
elsewhere) is expected to meet this requirement.

Short Term Stability. The maximum RMS frequency deviation
shall be +1 x 10-1l for averaging times ranging from 1
second to 20 minutes, under conditions of input voltage and
ambient temperature controlled to +1 millivolt and +0.1°C,
respectively. Status - dependent upon the individual
crystal unit. For_the good ones, the RMS deviation was
less than +3 x 10-11,

Frequency Acceleration Stability. The maximum frequency
change of the TMXO measured during static acceleration

shall be less than 5 x lO'lO/g when tested in accordance
with Method 513, Procedure II (helicopter category) MIL-




STD-810B. Permanent frequency change shall be no greater
than +1 x 10-9. Status - new requirement.

Frequency/Vibration Stability. The maximum permissible
frequency change of the TMXO measured during and following
vibration without isolators shall be +1 x 10™2 when tested
in accordance with Method 514, curve M, MIL-STD-810B. The
frequency deviation represented by the modulation side
bands at the vibration frequency shall not exceed 5 x 10-10
times the peak acceleration level specified for that fre-
quency by curve M. Status - new requirement.

Frequency/Shock Stability. The maximum permissible fre-
quency change of the TMXO following a shock of 50 g, 11
milliseconds, shall be +1 x 10~9 when tested in accordance
with method 213 condition G, MIL-STD-202D. Status - new
requirement.

Frequency/Attitude Stability. The maximum frequency change
of the TMXO for a 90 +5° attitude change in any axis shall
be less than +5 x 1010, status - new requirement.

Frequency/Altitude Stability. The maximum frequency change
of the TMXO following an altitude change from sea level to
10,000 feet shall be +1 x 10-9. Status - new requirement.

Stabilization Time. Following application of power, the
frequency of the TMXO shall be within 41 x 107° of final
frequency in three minutes. Status - 3-1/4 minutes at
=45°C.,

Frequency Recovery at -40°C. The output frequency of the
TMXO after warmup during each turn-on period for a five
cycle frequency recovery test, shall remain within +3 x
1079 of the frequency measured on the first cycle. Each
cycle shall consist of complete frequency stabilization
during turn-on, followed by complete thermal stabilization
aftgr power is removed. Status - typical value is +4 x
107° and is crystal and/or mount related. Considerable
improvement is expected with the new type ceramic crystal
unit (presently under development elsewhere).

Output Voltage. A minimum of 0.125 volts RMS at the 5.115
MHz output frequency shall be available across an external
resistive load of 50 ohms. Status - requirement satisfied.

7/(8 blank)




II

ELECTRONIC DESIGN

The electrical schematic, used in the deliverable models,
is shown in Figure 1. It is the same as presented in the pre-
vious report with the exception of the values of R27 and the
external temperature setting potentiometer. The value of R27 has
been changed from an unspecified select by test value, to (RTl at
90°C) - 22 kQ. The potentiometer has been changed from 20 k to
50 kQ.

These changes were necessary to allow for the resistance
tolerance of the thermistor at 90°C, and for the +5°C variation
in the upper turn temperature of the crystal. The value of the
thermistor at 90°C is 54 kQ, +10%. The minimum thermistor value
due to its tolerance is 49.6 kQ at 90°C. 1If the upper turn
temperature of the crystal is a 95°C, the minimum thermistor
value will be 42 k2. The maximum thermistor value will be a +10%
tolerance thermistor, when the upper turn temperature is +85°C.
This value is 73 k. Therefore, allowing for a +10% thermistor
tolerance, and a +5°C upper turn temperature tolerance, the
thermistor range will be from 42 kQ to 73 k. The minimum
potentiometer value is 73 kQ - 42 k@ = 31 kQ. Using a 50 kQ
potentiometer, the near optimum value of R27 = RT - 22 k@,
measuring RT at 90°C. Refer to Table 1.

TABLE 1. THE RANGE OF R27 AND POTENTIOMETER

RT R27 RT with Pot. with RT with Pot. with
at 90°C (RT-22k) §5°C Xle 85°C Xle 95°C Xle 95°C Xle

60K 38KQ 73K 35K 51KQ 13KQ

48KQ 26KQ 58K 32KQ 42K 16K

An up-dated parts list is tabulated in Figure 2.

To test the microcircuit (without a crystal), a microcir-
cuit test fixture was fabricated. With this fixture, the sealed
and unsealed microcircuit was tested in conjunction with a tem-
perature controlled test crystal. This crystal was kept at its
upper turn temperature being part of a TMXO configuration with
the oscillator disconnected. The crystal leads were brought to
two TMXO terminals, where short (2 inch) rigid leads went to the
microcircuit under test.

9/(10 blank)




D INDICATES TMXO TERMINAL NO.

XXX FACTORY ADJUSTMENT,

AND NOT AVAILABLE
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TEMPERATURE
CONTROL

O INDICATES MICROCIRCUIT PIN NO.

R1

Q10
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Q3
MMCS3762

002-1021-00|

S, Gt
iyl

TEMPERATURE ADJUST
EXTERNAL 50 K POT. TO GND)
BOURNS 3262%-1 503

R10
68K
R21
47K R24
1MEG
A
CR16 /
1N5476A
¢ —

3=
X o
AN

Y™

oJnjulle!

A
GND FINE

FREQUENI

ADJUST

0-100K

10 TURNY




: =
:17\0.0063 120K o .
UF
r 2N2857
I RIZ ]
2 68K 6 51K 12
INO18
= 2
390 pfF T
5 o 5 MHz
it , , ouTPU
x 0SCILLATOR (50 0K
K2 12
Bax ™ S1pF X
R14 :
INS476A 1.8 Fino1
c13
0.0068UF
L }——4- b
R19 CR14 S0 R17 _L cé
3 NS474 0.0063
2K T IN5474A ;[ 330 pF 80 l\ UF
7

NOTES:

1. UNLESS OTHERWISE NOTED, RESISTORS ARE * %% TOL.
2. TRANSISTORS ARE TO BE SELECTED AS FOLLOWS: 0
a. Ql: MOTOROLA MMCS 5088 SELECTED FOR heg Y600 € 100 UA, Vg = +6VDC, T=9%"C.

b. Q2 2N3734, heeS90E I = 10mA, Ve = +6V DC, T+ 0°C. ,
b C. Q3 MOTOROLA MMCS 3762, OR 2N5023, h > I = 10 mA, Vg = +6V DC, T %0°C.

> n : 3.X VALUES CF R14, R22, R27 ARE APPROXIMATIONS.

VALUES MUST BE DETERMINED FOR EACH OSCILLATOR.

: 4. CAPACITORS C2, C3, C12, C14 ARE AMER|CAN TECHNICAL CERAMICS (ATC) TYPE ATC-100.
0 FINE
FREQUENCY
ADJUST
0-100K
10 TURNS
Figure 1. Electrical Schematic of TMXO
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MECHANICAL DESIGN

1. GENERAL CONFIGURATION

The general configuration of the TMXO has not changed from
that described in the previous report (ECOM-75-1327-1). Some
additional details are given here by means of two drawings.
Figure 3 shows the TMXO cover (cap), and Figure 4 is a drawing
of the machined header.

Pl SEALING THE CRYSTAL ENCLOSURE

The crystal enclosure consists of a ring and two cover
plates, all made out of nickel. The covers were soldered to the
ring with a 96% tin - 4% silver solder (221°C), using a reflow
technology. One of the covers had a small hole for evacuation
and backfilling. The enclosure was outgassed at 5 x 10-6 Torr
for 40 hours at 150°C. It was then backfilled with nitrogen at
about 10 Torr. The hole was sealed by solder reflow (96% tin -
4% silver) using a remotely controlled soldering iron tip in a
vacuum system. To prevent any solder from striking the crystal,
a copper foil baffle had been previously welded over the hole on
the inside of the cover. A fixture to seal five crystal en-
closures in a single pump down was used.

3. SEALING THE MICROCIRCUIT ENCLOSURE

This enclosure was sealed in vacuum. The cover had a hole
and baffle similar to that of the crystal enclosure. The cover
was soldered on, in air, using the 95% tin - 4% silver solder.
The microcircuit enclosure was then placed in a vacuum chamber
and out-gassed at 5 x 10-6 Torr for 40 hours at 150°C. The
evacuation hole was then sealed in the same manner as the crystal
enclosure.

4. SOLDERING THE CRYSTAL AND MICROCIRCUIT ENCLOSURES TOGETHER

The crystal and microcircuit enclosures are soldered to-
gether so that there will be good heat transfer from the heater
to the crystal. The sides without the sealing holes are first
“"tinned" with solder. The enclosures are then held together,
reheated until the solder flows, and then cooled. Because of
the solder temperature problems discussed in paragraph 5 of
this section, a special solder was employed for this purpose.
This solder is 55% tin - 45% lead. This is not a standard
formulation, therefore, it was prepared in our laboratory from
the pure elements. This solder has a solidus of 181°C and a
liquidus of 205°C. At 185°C this solder shows no flowing
tendency even with added liquid flux.
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5. SOLDER TEMPERATURE PROBLEMS

The improper selection of solders can lead to catastrophies.
Such a catastrophe occurred when we originally chose the 60% tin
- 40% lead solder (181°C eutectic) for joining the crystal
enclosure to the microcircuit enclosure. When sealing the TMXO,
this 181° solder flowed, coating the microcircuit enclosure and
shorting out the oscillator. The TMXO was sealed with a 162°C
eutectic, being heated to about 180°C to make the seal. The
181°C solder was changed as described in paragraph 4 of this
section. The correct solders to use are indicated in Figure 5,
Solder Flow Chart.

6. THE PEDESTAL

The thermal insulating pedestal remains the same as last
reported. It is machined out of DuPont's polyimide VESPEL-SP-1.
Thermal resistance of this pedestal is 1830°C/W. A drawing of
the pedestal is shown in Figure 6.

7 SEALING THE TMXO

Sealing the TMXO enclosure required special fixturing for
vacuum sealing the stainless steel TMXO case. It consisted of
the following:

(a) An upper oven to outgas the TMXO cap just prior to
final sealing.

(b) A lower oven to outgas the TMXO header, pedestal,
crystal package, and microcircuit package just prior
to sealing. This lower oven will also supply the heat
to seal the TMXO.

(c) A remote controlled mechanism, which lowers the TMXO
cap from the upper oven to the lower oven. To ensure
a better seal it can also turn the cap during the
solder reflow sealing.

(d) Several thermocouples to measure the temperature at
various places.

The header and cap are pretinned with the 162°C eutectic
solder. The TMXO is then assembled, tested, and placed in the ’
sealing fixtures in the vacuum chamber. The unit is tested
under vacuum conditions and then shut off. The header assembly
is outgassed in the lower oven at 150°C and the cap is outgassed
in the upper oven at 220°C. Both are at a pressure between
1 x 10-5 and 5 x 10-6 Torr for 90 hours. After the 90 hours, !
the temperature of the header is raised to 175°C, the cap is
lowered, and the seal is made. The temperature at the seal at
this time is 180°C.
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THE VACUUM PROBLEM

E. GENERAL

Maintaining a vacuum in the sealed TMXO is still a problem
area. To show no degradation in power or performance for a
period of one year, the pressure inside the TMXO must remain
below 5 x 10”4 Torr. If the pressure increased to 1 x 1073, the
performance would be adequate, except for a few percent increase
in power.

The pressure increase in the TMXO is primarily due to out-
gassing inside, or a leak in the TMXO package. A leak in the
microcircuit or crystal enclosure is less of a problem, as the
pressure inside these enclosures is two to three magnitudes be-
low atmospheric pressure. What ever the source of the residual
gases, the getter welded in the TMXO cover will absorb some
percentage of these gases. Our experiments indicate that the
pumping speed of the getter is greater than 4 x 10-12 Torr-1/s
mg. The getter consists of 110 mg of active mass, for a pumping
speed greater than 110 x 4 x 10-12 = 4.4 x 10710 Torr 1/s.

Therefore, if the outgassing and leak rate can be kept
below this level, the TMXO will maintain its vacuum.

2. OUTGASSING

Experiments with a stainless steel pedestal in a stainless
steel TMXO package have shown that the outgassing is below the
getter's pumping speed (greater than 4.4 x 10-10 Torr 1/s). The
pedestal and cap was outgassed for 96 hours at 400°C. The
header was outgassed at 200°C for 96 hours. Just prior to seal-
ing, the assembly was outgassed 40 hours at 150°C.

A similar experiement with a VESPEL pedestal resulted in a
pressure rise in the TMXO package. A small leak in the TMXO
package as well as insufficient outgassing of the pedestal was
probably the cause. The pedestal had previously been outgassed
as follows.

(a) 3 hours at 300°C in vacuum

(b) 24 hours at 350°C in air

(c) 40 hours at 400°C in vacuum.

Outgassing temperature of the microcircuit/crystal assembly
is limited to 160°C because of construction materials.
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35 LEAKS IN THE TMXO PACKAGE

The TMXO header contains eight metal/ceramic feedthroughs.
This type of feedthrough did not leak when previously used.
They had been vacuum brazed by the ECOM laboratory. 1In the
present program, the brazing was done by a commercial company,
in an argon atmosphere.

All feedthroughs were leak tested prior to sending them and
the headers out for brazing. When the brazed parts were re-
turned, the header was leak tested. A small percentage of the
feedthroughs had small leaks. The headers were then vacuum
outgassed at 400°C for 100 hours. The small leaks became
larger and new small leaks were found.

Mostof the leaks were at the ceramic-pin interface and was
probably due to rapid cooling after brazing. Insufficient time
did allow procuring new feedthroughs, and reprocessing the
headers. The leaks were repaired using a 80% gold - 20% tin
solder (280°C). After this repair, a few small leaks (between
2 x 1072 and 2 x 10-10 stg cc/s) were found. These were
eliminated by sealing with epoxy on the outside of the header.
The possibility of the epoxy contributing to the outgassing
inside the TMXO is almost nonexistent. The surface area of the
epoxy exposed through such a small leak is infinitesimal.

4. PROCEDURE FOLLOWED IN THE DELIVERABLE MODELS

The various solder temperatures used in the fabrication
of the TMXO, followed the solder flow chart shown in Figure 5.

The outgassing schedules for the various parts and as-
semblies were as follows.

The TMXO cover. Outgassed at 1 x 10~5 Torr at 480°C for
96 hours. Electropolish. Outgass at 1 x 10~2 Torr at 400°C
for 96 hours.

The TMXO header. Before feedthroughs, outgassed at 1 x
10> Torr at 480°C for 96 hours. Electropolish. Braze in
feedthroughs. Outgas at 1 x 10-3 Torr at 400°C for 96 hours.
Repair leaks with 80% gold - 20% tin solder. Complete repair
with epoxy. Outgas 100 hours at 1 x 10~> Torr and 180°C.

The Vespel pedestal. Bake jin air at 350°C for 48 hours.
Outgas at 1 x 102 Torr for 96 hours at 400°C.

The Microcircuit Package (without the microcircuit). Out-
gas at 1 x 1072 Torr for 96 hours at 180°C.

The crystal enclosure ring and covers. Outgas at 1 x 10"5

Torr for 96 hours at 480°C.
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The TMXO assembly just prior to sealing. Vacuum outgas at
1 x 107> Torr at 150°C for 90 hours.
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PERFORMANCE OF DELIVERED MODELS

Five engineering models were delivered. They were tested
in accordance with the test set-ups shown in Figures 7, 8 and 9.

X. SETTING THE OPTIMUM CRYSTAL TEMPERATURE

When testing the unsealed TMXO both in air and in vacuum,
the temperature was set to a nominal 90°C by a fixed resistor
connected remotely from the TMXO across terminals 8 and 7. After
sealing, while still in the vacuum chamber, the TMXO was briefly
tested in the same manner. After removal from the vacuum
chamber, the optimum crystal temperature was set.

Experience has shown that it takes less time to set this
critical temperature if a resistance decade box is first used,
and then replacing it with the potentiometer. Using the
potentiometer only is very difficult because the value of the
potentiometer at any setting is not known, it is difficult to
keep track of the number of turns, and its linearity is unknown.
The resistance decade box is connected across terminals 8 and
7, and set at 25 k. In a temperature chamber at 25°C, the
TMXO is turned on, and after a few minutes the resistance is
changed until the frequency is near its minimum value. Lower
the temperature to -40°C, set the resistance box so that the
frequency is 2 x 10~8 higher than it was at room temperature.
Go back to room temperature and note the frequency. The -40°C_
to +25°C frequency change will probably be greater than 2 x 10
of the last -40°C reading. Repeat the -40°C -25°C cycle.
Change the temperature to +70°C, note the frequency. It should
be greater than the room temperature value and be approximately
equal to the -40°C value. 1If not, a resistance change at +70°C
and at 25°C should be made. Set a potentiometer to the decaded
resistance value and insert it in the base of the TMXO. Repeat
the thermal cycling going from +25°C, =-54°C, +75°C, +25°C,
setting the temperature to optimize the frequency/temperature
curve. Only a + half turn of the potentiometer should be
required. N

8

7 OPERATING POWER

The operating power depends upon the degree of vacuum in
the TMXO. The power was calculated from the input current
measurement using set up No. 1. The input current is not a
constant DC value, but is a current pulse whose amplitude, width,
and period is a function of the ambient temperature. The setup
shows the current being measured by a Weston milliampere meter
and a Tektronix current probe. At times a Triplett (DC milli-
amperes) was used in place of the Weston meter. Both of these
meters give the correct result of the average current. There is
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an oscillation in the indicating needle due to the pulsing
characteristic of the input current but the average reading is
the average current.

The validity of the DC meter reading was proven by the
current measurement using the current probe. The average
current was calculated from the pulse measurement using the
following equation:

Pulse amplitude (at 90%)x Pulse with (at 50%)

Iavg ot Period

The operating powers for the models at various temperatures
are.

TMXO No. 1

+25°C, 0.028 W
-40°C, 0.40 W
-54°C, 0.50 W
+75°C, 0.084 W

TMXO No. 2
+25°C, 0.56

~54°C, 1.20
+74°C, 0.17

===

TMXO No. 3

+25°C, 0.44
-40°C, 0.75
-54°C, 0.90
+67°C, 0.20

=S

TMXO No. 4

25°C, 0.30 W
TMXO No. 5

25°C, 1.0 w

TMXO Nos. 4 and 5 had no RF output and only limited
measurements were made on these units.

3 PEAK POWER
This is the input power at turn on. It is limited by
current limiting resistors in the TMXO. The duration of this

peak power is a function of the ambient temperature, varying
from a few seconds at +75°C to about 80 seconds at =-54°C. The
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peak power is measured using test setup No. 1 and is:

TMXO No. 1 8.4 W
TMXO No. 2 7.8 W
TMXO No. 3 9.0 W
TMXO No. 4 9.0 W
TMXO No. 5 9.0 W

4. VOLTAGE CONTROL

A voltage source of 0 to 10 VDC, in conjunction with two
resistors (85 k@ and 15 k), will result in a fine frequency
adjustment. The test setup for this measurement is shown in
Figure 9. The frequency range in response to this voltage
control for the various models is as follows.

Model No. 1 3.2 x 1077
Model No. 2 3.2 x 10_,
Model No. 3 2.9 x 10
Model No. 4 No RF output
Model No. 5 No RF output

The control voltage/frequency curve can be seen in Figure 10.
5. FINE FREQUENCY ADJUSTMENT
The fine frequency adjustment is accomplished with a ten

turn 100 k potentiometer. The center of the tuning range
occurs at about 22 k. The tuning range for the models was.

Model No. 1 4.4 x 1077
Model No. 2 4.4 x 10_,
Model No. 3 4.0 x 10
Model No. 4 No RF output
Model No. 5 No RF output

The frequency could be set to better than +3 x 10-10,

which was the resolution of the test setup. This setup is shown
in Figure 8.

6. FREQUENCY/TEMPERATURE STABILITY (STEADY STATE)

The steady state frequency/temperature characteristics,
over an ambient temperature range of =55°C to +75°C, is plotted
in Figures 11, 12 and 13 for Models 1, 2 and 3. No data is
available for Models 4 and 5, as they had no RF output. Model
No. 1 had a good vacuum and its freguency change over the
temperature range was only +4 x 1077. Models 2 and 3 had poor
vacuums and their frequency change was +7 x 10-8 and +1.05 x
10-7 respectively. The test setup to make these measurements
is shown in Figure 7.
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25 FREQUENCY/TEMPERATURE STABILITY (TRANSIENT)

The frequency should not be sensitive to transient tempera-
tures. The maximum allowable frequency change is +1 x 10-8 when
subjected to a positive 10°C amplitude at a rate of 1°C/min,
starting from -40°C, -5°C, +30°C, and +65°C. This parameter was
measured for Model No. 1 with the following results.

Starting Temperature
Temperature Ramp Rate Maximum AF/F
-40°C 6.7°C/min “2.8 % 07
~5°C 6.7°C/min _ -3.8 x 1077
+30°C 7°C/min ~5.2 2 1072
+65°C 4.4°C/min -5.2 x 1077

The test setup is shown in Figure 7.
8. FREQUENCY/LOAD STABILITY
The change in frequency with a change in load was measured

using the test setup shown in Figure 8. The measured values
are given in the following table.

TMXO No. Load AF/F
1 560 + 20°¢ =2.1 % 10~
1 560 -~ 20°¢ +2.8 x 1077
1 440 + 20°¢ -1.2 x 1072
1 440 - 20°¢ +2.0 x 10710
3 560 + 20°¢ -1.4 x 107°
3 560 ~ 20°% +4.2 x 10°°
3 440 + 20°¢ “hed % 1077
3 44 ~ 20°¢ +3.6 x 10°°

9. FREQUENCY/POWER SUPPLY VOLTAGE STABILITY

The change in frequency due to a change of +5% in the
power supply voltage was measured with the test setup shown
in Figure 8. The measured data is tabulated below.




Power Supply

TMXO No. Voltage Change AF/F
1 +5% -3 x 10"
1 -5% +2 x 1072
3 +5% +3 x 10720
-10

3 -5% -8 % 10

10. SHORT TERM STABILITY

The short term stability was measured using the test setup
shown in Figure 8. Peak frequency deviation readings were taken
on the computing counter having an error of +3 x 10-10, The
averaging time was 1 second and readings were taken over a time
period of 20 minutes.

Results were as follows. i
Model No. l: Better than +3 x 10 10 peak-to-peak,

corresponding to an RMX value of ap-
proximately better than +3 x 10-11

Model No. 2: +2 x 10-8 peak-to-peak, corresponding to
an RMS value of approximately +2 x 10-9

Model No. 3: +1.2 x iy peak-to-peak, corresponding
to an RMS value of approximately
+1.2 x 10~10

The high noise in Models 2 and 3 was due to noise on the input
pulse to the TMXO.

11 FREQUENCY/ATTITUDE STABILITY

This is a measurement of the change in frequency when the
orientation of the TMXO is changed relative to the ground.
This measures the effect of the gravitational force on the TMXO
frequency. Measurements were made on Model No. 1. For a 90
degree change_in attitude, the frequency deviation was less
than +3 x 10710, For an attitude change of 180 degrees (A2G),
the frequency deviation was 8 x 10-10 or 4 x 10-10/G.

ke STABILIZATION TIME

From turn on, the time needed for the frequency to be
within 1 x 10~8 of the final frequency was measured using the
setup as shown in Figure 7. The warmup curves from various
ambient temperatures are plotted in Figures 14, 15, and 16.
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s FREQUENCY RECOVERY AT -40°C

The ability of the TMXO to return to the same frequency
after being in the off condition is an important stability
parameter. The TMXO was maintained at an ambient temperature
of -40°C. It was then subjected to five on-off cycles, each
off cycle being at least 30 minutes. The maximum frequency
deviation was +5 x 10-8. As in previous measurements on earlier
TMXOs, this change in frequency seems to be crystal dependent.
There also seems to be two superimposed effects. One is a slow
continuous hysteresis phenomenon while the other is a step
change.

14. OUTPUT VOLTAGE
The minimum output voltage requirement of 0.125 volts RMS

into 50 ohms was easily satisfied. The values for the TMXO
models ranged from 0.148 volts to 0.28 volts.




VI

CONCLUSIONS

This TMXO program is directed at producing an ultrastable
frequency source. The TMXO requirements allows a frequency
variation of +2 x 10-8 for all specified conditions simulta-
neously, as well as being compatible with other requirements.
These other requirements have to do with size, power and warmup
characteristics.

The frequency deviation budget (compiled from Section I of
this report) is as follows.

Allowed
Frequency
Parameter Deviation
(a) Ambient Temperature, -54°C to +75°C +l x 7
(b) Change in Power Supply Voltage +1 x 10™?
(c) Change in Load +1 x 107°
(d) Acceleration, 1G 5 x 10710
(e) Vibration +1 % 167>
(£) Mechanical Shock +1 x 1% 2
(g) Attitude 5 x 10710
(h) Altitude +1 x 1077
(i) Frequency Recovery +3 x 1079
(j) Aging 2 x 10710k
The above parameters can be divided into groups.
Allowed
Frequency
Group Parameter Deviation
Ambient Temperature - 54°C to +75°C +1 x 1078
Electrical Environment (b and c) +2 x 10"
Mechanical Environment (d, e, f, g and h) +4 x 1072
Frequency Recovery +3 x 107°
Aging 2 x 10710 /wk
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Model No. 1, which had the best vacuum, had the best TMXO
characteristics. Assuming a TMXO with a good vacuum, the
following performance deficiencies (relative to the above group
parameters) still exist. Frequency deviation due to the elec-
trical environment is +6 x 10~2. Frequency recovery deviation
is +5 x 10-8, Frequency changes due to aging are two orders of
magnitude greater than required.

The frequency/temperature requirement was easily met.
Measurements to date do not indicate any problem in the
mechanical environmental areas.

Several problems remain, some are major, while others can
be considered minor. The major problems are; vacuum, frequency
recovery, quality of the crystal, and more reliable construction.

Model No. 1 had a sufficient vacuum, permitting excellent
frequency/temperature characteristics both under steady state
and transient conditions. However, the vacuum was not as good
as expected, resulting in an operating power at -54°C of 0.5
watts instead of the expected value of 0.3 watts. Although the
0.5 watts may be suitable for most TMXO applications, the other
models were not that good. The primary cause of the poor vacuum
is leaks through the seals in the outer case. Better construc-
tion techniques are needed in fabricating the outer case.
Secondary causes of the poor vacuum may be some leakage from the
crystal and/or microcircuit enclosures. Going to ceramic
packages for both of these may help the vacuum problem.

It is expected that the new ceramic crystal enclosure and
crystal will greatly help the frequency recovery problem. It
is not presently known if the circuitry contributes to this
problem. With a better crystal, the circuitry recovery can be
evaluated. If a circuitry problem is found, it most likely can
be eleiminated by thermal cycling.

The new crystal in the ceramic enclosure will not only help
the frequency recovery, it should give better stability with
time, and much improved long term aging.

The present TMXO models were constructed using the "chip
and wire" technology and with crystals assembled in our labor-
atory. Several failures were experienced due to these non-
production-like techniques. The new crystal/enclosure should
eliminate any crystal failures. It is recommended that the
construction technique be changed to “"thick film hybrid". With
these two changes, the reliability of the TMXO should greatly
improve.
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Several minor problems exist, one onld, and some new. The
old problem is the change in frequency with load and voltage.
The present frequency variation is +3 x 10-9 for either load or
supply voltage. It is recommended that the circuit be modified
to give better isolation.

Q10 of the present circuit is a CNCLO05, a FET current
iimiting device, manufactured by Siliconix. This chip is no
longer available and a replacement must be found. This is not
a serious problem as several similar devices are available.

The other new problem is noise on the input current pulse.
This noise causes a control temperature variation which results
in frequency variations. The input to the TMXO being a low
duty cycle pulsed current, any noise is amplified by a factor
inversely proportional to the duty cycle. It is recommended
that the input be changed to steady state, and the noise be
eliminated. This will require some redesign of the heater
circuit.
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VII

FUTURE PLANS

To overcome the present deficiencies and solve the remain-
ing problems, the following is planned for the continuance of
this contract.

(a)

(b)

Electrical Redesign

To eliminate the noise on the imput current pulse, the
heater circuit will be redesigned for steady state
operation. To improve the frequency/voltage stability,
the coarse varactor will be replaced with a tapped
capacitor. Better isolation will be incorporated to
enhance the frequency/load characteristics. The
circuit will be modified so that it will operate with
a 10 MHz fundamental and a 10 mHz third overtone, as
well as with the 5.115 MHz fundamental. A replacement
for Q10 will be found to replace the part which is no
longer made.

L4

Mechanical Redesign

The construction of the circuitry will be converted

to the thick film hybrid technology. The same layout
will be used for the three crystal types. The micro-
circuit will be enclosed in a ceramic package having
fired-in feedthroughs. The outside package will be
changed to a design similar to one now in production
for a vacuum application. The outside package will be
fabricated by the company who now has this similar
design in production. This new outside package should
solve the vacuum problem. The next models will use
the newly developed ceramic crystal package. This
crystal should yield better aging units, as well as
improve the TMXO thermal retrace for on-off cycling
from -40°C.

Five models will be delivered with these new changes.
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